Science & Technology

The Milky Way Isn't Flat — It's Actually Warped

We're nominated for an award! Please click here to vote for Curiosity Daily for Best Technology & Science Podcast in the 2019 Discover Pods Awards.

For centuries, astronomers have been studying the Milky Way in order to get a better understanding of its size and structure. And while modern instruments have yielded invaluable observations of our galaxy and others (which have allowed astronomers to gain a general picture of what it looks like), a truly accurate model of our galaxy has been elusive.

For example, a recent study by a team of astronomers from National Astronomical Observatories of Chinese Academy of Sciences (NAOC) has shown that the Milky Way's disk is not flat (as previously thought). Based on their findings, it appears that the Milky Way becomes increasingly warped and twisted the farther away one ventures from the core.

Related Video: Why the Earth Is Round and the Milky Way Is Flat

The study that details their findings recently appeared in the scientific journal Nature, titled "An intuitive 3D map of the Galactic warp's precession traced by classical Cepheids." The study was led by Xiaodian Chen of the NAOC's Key Laboratory for Optical Astronomy and included members from the Kavli Institute for Astronomy and Astrophysics at Peking University and China West Normal University.

To break it down, galaxies like the Milky Way consist of thin disks of stars that orbit around a central bulge once every few hundred million years. In this bulge, the gravitational force of hundreds of billions of stars and dark matter hold the galaxy's matter and gas together. However, in the far outer regions of the galaxy, the hydrogen atoms making up most of the gas disk are no longer confined to a thin plane.

Using information from Gaia's second data release, a team of scientists have made refined estimates of the Milky Way's mass.

As Dr. Chen explained in a recent Kavli Institute press statement:

"It is notoriously difficult to determine distances from the Sun to parts of the Milky Way's outer gas disk without having a clear idea of what that disk actually looks like. However, we recently published a new catalogue of periodic variable stars known as classical Cepheids, for which distances as accurate as 3 to 5% can be determined."

Classical Cephieds are a subclass of Cephied variables, a type of star that is noted for the way it pulsates regularly, varying in both diameter and temperature. This produces changes in brightness that are predictable in terms of period and amplitude and makes them highly useful for measuring galactic and cosmic distances.

The Milky Way galaxy, perturbed by the tidal interaction with a dwarf galaxy, as predicted by N-body simulations.

Classical Cepheids are a particular type of young yellow bright giant and supergiant that are 4 to 20 times as massive as our Sun and up to 100,000 times as luminous. This implies that they have short lifespans that sometimes last only a few million years before exhausting their fuel. They also experience pulsations that can last days or even a month, which makes them very reliable for measuring the distances to other galaxies.

As Dr. Shu Wang, of the Kavli Institute for Astronomy and Astrophysics and co-author on the paper, stated:

"Much of our Milky Way is hidden by dust, which makes it difficult to measure the distances to stars. Fortunately, observations at long infrared wavelengths can circumvent this problem."

For the sake of their study, the team established a 3D galactic disk model based on the positions of 1,339 Classical Cepheids. From this, they were able to provide strong evidence that the galactic disk is not in line with the galactic center. In fact, when viewed from above, the Milky Way's disk would appear S-shaped, with one side curving up and the other curving down.

Said Macquarie University's Professor Richard de Grijs, a senior co-author on the paper:

"Somewhat to our surprise, we found that in 3D our Cepheid stars and the Milky Way's gas disk follow each other closely. This offers new insights into the formation of our home galaxy. Perhaps more important, in the Milky Way's outer regions, we found that the S-like stellar disk is warped in a progressively twisted spiral pattern."

These findings are reminiscent of what astronomers have observed of a dozen other galaxies, which showed progressively twisted spiral patterns. By combing their results with those observations, the researchers concluded that the Milky Way's spiral pattern is most likely caused by rotational forcing (aka. "torques") of the inner disk.

This latest study has provided an updated map of our galaxy's stellar motions, which would shed light on the origins of the Milky Way. What's more, it could also inform our understanding of galaxy formation and the evolution of the cosmos.

This article is republished from Universe Today under a Creative Commons license. Read the original article.

Get stories like this one in your inbox or your headphones: sign up for our daily email and subscribe to the Curiosity Daily podcast.

For a deeper exploration of our galaxy and the space beyond it, check out "The New Cosmos: Answering Astronomy's Big Questions" by David J. Eicher, editor-in-chief of Astronomy Magazine. We handpick reading recommendations we think you may like. If you choose to make a purchase, Curiosity will get a share of the sale.

Written by Matt Williams for Universe Today March 1, 2019

Curiosity uses cookies to improve site performance, for analytics and for advertising. By continuing to use our site, you accept our use of cookies, our Privacy Policy and Terms of Use.