Science & Technology

Diamonds Have Nothing on These 'Superhard' Forms of Carbon

We're nominated for an award! Please click here to vote for Curiosity Daily for Best Technology & Science Podcast in the 2019 Discover Pods Awards.

Scientists have identified 43 previously unknown forms of carbon that are thought to be stable and superhard — including several predicted to rival the hardness of diamonds.

Each new carbon variety consists of carbon atoms arranged in a distinct pattern in a crystal lattice.

Superhard materials can slice, drill, and polish other objects. They also hold potential for creating scratch-resistant coatings that could help keep expensive equipment safe from damage.

The study — published in npj Computational Materials — combines computational predictions of crystal structures with machine learning to hunt for novel materials. The work is theoretical research, meaning that scientists have predicted the new carbon structures but have not created them yet.

"Diamonds are right now the hardest material that is commercially available, but they are very expensive," says Eva Zurek, professor of chemistry at the University at Buffalo. "I have colleagues who do high-pressure experiments in the lab, squeezing materials between diamonds, and they complain about how expensive it is when the diamonds break.

"We would like to find something harder than a diamond. If you could find other materials that are hard, potentially you could make them cheaper. They might also have useful properties that diamonds don't have. Maybe they will interact differently with heat or electricity, for example."

Hardness relates to a material's ability to resist deformation. As Zurek explains, it means that "if you try to indent a material with a sharp tip, a hole will not be made, or the hole will be very small."

Scientists consider a substance to be superhard if it has a hardness value of over 40 gigapascals as measured through an experiment called the Vickers hardness test.

Vickers Hardness Test

All of the study's 43 new carbon structures are predicted to meet that threshold. Three are estimated to exceed the Vickers hardness of diamonds, but only by a little bit. Zurek also cautions that there is some uncertainty in the calculations.

The hardest structures the scientists found tended to contain fragments of diamond and lonsdaleite — also called hexagonal diamond — in their crystal lattices. In addition to the 43 novel forms of carbon, the research also newly predicts that a number of carbon structures that other teams have described in the past will be superhard.

The techniques used in the new paper could be applied to identify other superhard materials, including ones that contain elements other than carbon.

"Very few superhard materials are known, so it's of interest to find new ones," Zurek says. "One thing that we know about superhard materials is that they need to have strong bonds. Carbon-carbon bonds are very strong, so that's why we looked at carbon. Other elements that are typically in superhard materials come from the same side of the periodic table, such as boron and nitrogen."

To conduct the study, researchers used XtalOpt, an open-source evolutionary algorithm for crystal structure prediction developed in Zurek's lab, to generate random crystal structures for carbon. Then, the team employed a machine learning model to predict the hardness of these carbon species. XtalOpt used the most promising hard and stable structures as "parents" to spawn additional new structures, and so on.

An illustration depicts three of 43 newly predicted superhard carbon structures. The cages colored in blue are structurally related to diamond, and the cages colored in yellow and green are structurally related to lonsdaleite.

The machine learning model for estimating hardness was trained using the Automatic FLOW (AFLOW) database, a huge library of materials with previously calculated properties. The lab of study co-leader Stefano Curtarolo, professor of mechanical engineering and materials science at Duke University, maintains AFLOW and previously developed the machine learning model with Olexandr Isayev's group at the University of North Carolina at Chapel Hill.

"This is accelerated material development. It's always going to take time, but we use AFLOW and machine learning to greatly accelerate the process," Curtarolo says. "The algorithms learn, and if you have trained the model well, the algorithm will predict the properties of a material — in this case, hardness — with reasonable accuracy."

"You can take the best materials predicted using computational techniques and make them experimentally," says study coauthor Cormac Toher, assistant research professor of mechanical engineering and materials science at Duke.

Additional researchers from the University at Buffalo, Duke University, and the Universitá degi Studi di Milano contributed to the work.

Funding came from the US Office of Naval Research, with additional support from the Universitá degi Studi di Milano, and computational support from the University at Buffalo's Center for Computational Research.

This article is republished from Futurity under a Creative Commons license. Read the original article.

Get stories like this one in your inbox or your headphones: sign up for our daily email and subscribe to the Curiosity Daily podcast.

Ever wonder why diamonds are so expensive? Find out in "Blood Diamonds: Tracing the Deadly Path of the World's Most Precious Stones" by Greg Campbell. The audiobook is free with an Audible trial. We handpick reading recommendations we think you may like. If you choose to make a purchase, Curiosity will get a share of the sale.

Written by Charlotte HSU from University at Buffalo October 18, 2019

Curiosity uses cookies to improve site performance, for analytics and for advertising. By continuing to use our site, you accept our use of cookies, our Privacy Policy and Terms of Use.